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spinning of co-polyester fibres in producing 
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A range of liquid crystalline polyester fibres varying in diameter from 65 to 440#m were 
produced by spinning from a hot melt. These were analysed for preferred orientation by flat- 
plate X-ray diffraction to produce equatorial azimuthal densitometry scans/(7) which were 
processed to produce the corresponding planar orientation profiles/(q~) corresponding to a 
Bragg separation of 0.448 nm. A further mathematical analysis was applied to these to 
produce the respective molecular orientation profiles/(c~) which may be more directly related 
to fibre mechanical properties./(~) profiles from this analysis were matched against theoretical 
/(~) calculated by assuming an idealized mechanism of affine deformation with no orientation 
losses due to thermal perturbations. The theoretical draws ratios corresponding to the experi- 
mentally observed (cos 2 ~) were matched against experimentally observed draw ratios to 
produce ratios which indicate drawing efficiencies. Although preferred orientation increased 
with increasing draw ratios, the drawing efficiency diminished with draw ratio. 

1. I n t r o d u c t i o n  
The analysis of the preferred orientation of the long 
molecules in polymer fibres is important in explaining 
their resulting anisotropic mechanical and physical 
properties. In liquid crystalline co-polyesters, the 
molecules are of a semi-rigid nature with strong inter- 
molecular cohesion. This, combined with the induc- 
tion of the large amounts of preferred orientation 
produced by fibre spinning, produces very stiff fibres. 
Co-polyesters have been spun either from solution 
[1, 2] or from the pure melt [2-4]. 

The rigorous characterization of the preferred 
orientation of the molecules involves analysis of the 
flat-plate X-ray meridional wide-angle reflections 
from molecular planes whose planar normals are 
orientated in the c-axis direction, or from equatorial 
wide-angle X-ray reflections whose planar normals are 
orientated at right angles to the c-axis. Where both 
types appear on an X-ray plate, the meridional reflec- 
tions appear much weaker but slightly sharper. 

The azimuthal analysis of the meridional reflections 
provides the more comprehensive description of low 
amounts of molecular preferred orientation in that the 
azimuthal X-ray intensity distribution around the 
X-ray plate I(7) may be more  directly related to 
the molecular orientational distribution I(e) where e is 
the orientation angle between the normal of the dif- 
fracting meridional plane and the fibre direction. 

I(~) is constructed from I(7.) using the relation cos 7 
cos 0B = cos ~ (where 0B is the Bragg angle) for a 
fibre mounted upright in the X-ray beam. The orien- 
tation parameter (cos 2 e ) m a y  then be calculated 

0022-2461/89 $03.00 + . 12 �9 1989 Chapman and Hall Ltd. 

according to 

~COS 2 e )  ~- f~/2 I(e) COS 2 e sin e de (1) 
5~/2 I(e) sin e de 0 

for fibres with radial symmetry around their fibre axes. 
However, meridional analysis has two disadvan- 

tages. Firstly, in cases of very high molecular orien- 
tation, the azimuthal X-ray intensity profile 1(7) is 
masked by the convoluted X-ray intensity distribution 
of broadening due to strain and polycrystallinity. 
Secondly, meridional reflections are generally weak or 
non-existent in many of the X-ray patterns of fibre 
polymers in general. Equatorial reflections, on the 
other hand, are much stronger, enabling a well- 
defined equatorial planar orientational profile I(qS) to 
be constructed from 1(7), the equatorial azimuthal 
intensity distribution. If ~b is the angle between the 
normal of the planes in which the molecules lie and the 
fibre direction, then I(~b) may be constructed from 
equatorial 1(7 ) using the relation cos 7 cos 0B = 
COS q~. 

In this work, a mathematical analysis based on 
work by Hermans et al. [5], Seitsonen [6, 7] and 
Biangardi [8] is applied which enables the molecular 
orientation functions I(e) of fibres to be constructed 
from I(qS) profiles of a liquid crystal co-polyester 
whose meridional reflections are too weak for objec- 
tive analysis. I(e) profiles devised by numerical analy- 
sis for each fibre is matched against their theoretical 
counterparts derived from the experimental draw 
ratio assuming affine deformation of the molecules 
during fibre spinning [9]. 

1683 



(a; ( bl 

R/ / I  

H I  m 

0 
0 

c) 

),=259 
~cos2c<~= 0.946 

i 

9O o 

(d) 

~=882 
<cos2o~>: 0.955 

/l~xl zleo) 

\ Y  
90 ~ 

Figure 1 Equatorial planar orientation distributions l(qS) and the 
derived molecular orientation distributions l(a) for fibres of diam- 
eter (a) 440/~m, (b) 200/~m, (c) 120#m, and (d) 65#m. Im is the 
respective maximum intensity. 

Other workers [10, 11] have extensively analysed 
equatorial and meridional X-ray diffraction traces to 
characterize the intrinsic nature of the preferred 
orientation of liquid crystalline polyester fibres in 
terms of both local and bulk distributions. This work, 
however, does not attempt to characterize these, but 
rather attempts to relate the normally described 
preferred I(~) orientation in terms of the efficiency of 
the hot drawing process in producing high amounts of  
preferred orientation. Preliminary work on three of 
the four fibres examined has already been reported 
[12] relating stiffnesses to preferred orientation, but 
does not include the mathematical deduction of the 
equatorial planar and molecular orientation distri- 
butions which follow. 
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Figure 2 The relationship between molecular intensity l(a) depicted 
by line OC and planar intensity I(0) obtained by integrating all I(~) 
values in the quadrant BOY, where OZ is the fibre direction. 

3. Discussion 
Fig. 2 shows how a set of molecular segments, lying in 
a plane whose normal is orientated at q5 to fibre axes, 
range in molecular orientation from ~ = (re/2) - q5 
to c~ = re/2, corresponding to lines OB and OY in 
Fig. 2, respectively. Assuming radial symmetry, only 
at q5 = 0 can I(qS) consist of  molecules of one value of 
~, i.e. c~ = re/2 corresponding to line OZ. In this case, 
I(~b = 0) is equivalent to I(a - 0). 

Integrating the molecular segment intensities I(c 0 in 
the quadrant BOY between w = 0 and re/2 gives the 
corresponding planar intensity I(qS) for any planar 
normal position at q5 generated about OZ, i.e. 

where 

Thus 

2.  E x p e r i m e n t a l  p r o c e d u r e  
Fibres of 65, 120, 200 and 440#m were produced by 
hot spinning from a 300 ~ C melt by a process described 
previously [12], the 65 #m fibre being the new addition. 
After flat-plate X-ray diffraction (with the specimens 
mounted upright in the X-ray beam) and densitometry 
to produce 1(7) from the strong equatorial 0.448 nm 
reflections, the respective equatorial planar orien- 
tations I(q~) were deduced using the cos ~b relation I(q~m) 
referred to in the Introduction. 

Fig. 1 depicts the orientation functions of the four 
where 

fibres with ~ = 90 ~ corresponding to the fibre axes. 
Strictly speaking, it is only possible to deduce I(~b) 
between ~b equal to 90 ~ and arc cos (cos ? cos 0B) = and 
9.9 ~ , but for fibres of  high orientation, the missing 
range between q~ equal to 9.9 ~ and 0 ~ may be deduced 
by extrapolation because I(~b) tends to flatten out at 

where 
low values of q~. 

The construction of  the molecular orientation func- 
tions I(~) and their theoretical counterparts g(~) for 

and 
each draw ratio, also shown in Fig. 1, is discussed 
below. 

I(~) = ~o/21(~) dw 

= (=/2 I(~) dw 
J~/2 , ~ d~ (2) 

w = arc cos (cos e cosec qS) (3) 

f~/2 I(c 0 sin ~ dc~ 
I(r = j=/2 ~ (sin 2 r _-- ~ o ~ )  "5 (4) 

This equation is similar to that derived by Hermans 
et al. [5], but the analysis from hereon differs from that 
first presented by Seitsonen [6] for the solution of  I(c0 
from values of  I(~b). 

The equation representing the numerical solution of  
Equation 2 for each I(~) is 

= I(%)Awl + I ( cq )A w 2 + . . .  + I (% )Awm 

(5) 

~1 = (~/2) - �89 (6) 

~ = (~/2) - A~ (n + �89 (7) 

1 ~< n ~< m (8) 

A~ = % - ~,+1 (9) 
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T A B L E  I Thermal expansion data for isotropic (ai) and orien- 1 
ted specimens (a• at 150~ 

a• (K -I)  1.67 • 10 -4 
a i (K -~) 0.91 x 10 -4 

With respect to Equation 3 

Aw, = arc cos [cos (~, + 1A~) cosec ~bm) 

- arc cos [cos (c~ n - �89 cosec qS,,] 

(lO) 

The value of each I(~) may be calculated in turn, 
starting with I(e,)  where e, = (~/2) - �89 at the low 
orientation end being assumed equivalent to I(~bl) 
where ~b, = Ae. In this case, Aw, = ~/2 and Equation 
5 becomes 

4oe~) 

5~ 1000 

Figure 3 Experimental (cos 2 ~} for all four fibres related to draw 
ratio 2. 

1(4),) = (n/2)I(cq) (11) 

where q51 = 0 ~ and el = 90 ~ �9 
Knowing I(~,) and the planar intensity I(~b2) at 

q52 = 2A~, I(~2) may be solved from Equation 5 by 

I(q~2) = I(cq)Aw, + I(c~2)Aw 2 (12) 

If, for example, measurements of  I(qS) were made in 
intervals of 1 ~ as was employed in this work, implying 
Ac~ = 1 ~ Equation 12 would be solved for I(c~ 2 = 
88.5 ~ ) by 

I(q~2 = 2~ = I(~ = 89.5 ~ [(arc cos(cos 90 ~ cosec 2 ~ 

- arc cos(cos 89 ~ cosec 2~ 

+ I(~ = 88.5~ cos(cos 89 ~ cosec 2 ~ 

- a r c  cos(cos 88 ~ cosec 2~ (13) 

I(~ = 89.5 ~ ) may be estimated as I(e = 90 ~ ) 
because dI(e)/de ~ 0 as ~ ~ 90 ~ in Fig. 1. 

Knowing I(e,) and I(e2), I(~3) may be solved from 
Equation 5 by 

/(43 = 3 ~ = / ( e l ) A W l  + / (~2)Aw2 + I (~3)Aw3 

(14) 

The normalized I(e) profiles for each of  the four fibres 
may be compared with their corresponding I(~b) 
profiles in Fig. 1. I(c 0 is sharper than I(~b), especially 
for the first two fibres where I(e = 10 ~ is about half 
of  I(q~ = 80~ For  each fibre, I(~) may also be com- 
pared with its theoretical counterpart g(e) derived 
from a knowledge of the draw ratio employed in the 
production of each fibre, assuming affine deformation 
first proposed by Kratky [9]. In this idealized model of 
draw-induced preferred orientation, each molecular 
segment at any initial orientation e0 rotates to lie 
closer to the drawing direction with no loss of orien- 
tation due to thermal perturbations. Hence, the only 
factor predicting the final orientation function is the 
geometry of the drawing deformation, i.e. if 2 is the 
draw ratio, then 

cot ~l = 21"5 cot c~ o (15) 

and the final orientation function g(e) derived by 
Kratky, assuming an initial isotropic arrangement of 
molecules before drawing, is given by 

1 
g(c0 = [2 3 - (2 3 - 1) cos2c~] 's (16) 

In order to calculate the true draw ratios for the 
final diameters of the four fibres, it is necessary to 
know the respective hot diameter (dh) at the extrusion 
temperature so that the reduction in diameter due to 
thermal expansion is corrected for. The hot diameter, 
dh, is calculated by d0(1 + aAT) where do is the cold 
diameter, and a is thermal expansion between ambient 
and the extrusion temperatures (AT). The true draw 
ratio is then calculated by dg/d 2 where do is the orifice 
diameter. Values of a may differ slightly due to dif- 
ferences in preferred orientation between fibres, but in 
each case it would lie between that corresponding to 
isotropy (ai); and that corresponding to near-perfect 
preferred orientation perpendicular to the length of  
the molecules (a• Co-polyester prepared by hot 
pressing powder or very thin fibres together, to 
produce isotropic and anisotropic specimens, respect- 
ively, were measured for thermal expansion in a 
dilatometer at 150~ and the results are given in 
Table I. 

The mean value of 1.29 _+ 0.38 x 10-4K -I was 
thus used to estimate the hot diameter dh for all fibres. 
The true draw ratios 2 calculated by d~/d~ were 
employed to construct the theoretical orientation 
functions g(e) appearing in Fig. l a for the thickest 
440 #m fibre, g(e) for the 200 #m fibre is very sharp 
and only appears to deviate from ~ = 0 right at the 
bottom, g(c0 for the two thinnest fibres are so sharp 
that they cannot be represented in Figs lc and d. 

Values of  (cos 2 ~} calculated from Equation 1 for 

~os2~ 

}, 6 12 

Figure 4 (cos 2 c~} calculated according to affine deformation related 
to draw ratio 2. 

1 6 8 5  



T A B L E I I Drawing efficiency (DE) of the co-polyester fibres 

Diameter (~m) (cos 2 c~) 2 2 e DE (%) 

440 0.882 19.3 5.25 27.2 
200 0.916 93 6.72 7.2 
120 0.946 259 9.18 3.5 
65 0.955 882 10.4 1.2 

the experimental I(e) are plotted against draw ratio, 2, 
in Fig. 3. The point at 2 = 1 corresponds with 
the assumption of isotropy before drawing with 
(cos 2 c~) = 1/3. It is seen that after spinning past a 
draw ratio of 300, very little gain is made in preferred 
orientation with (cos 2 e)  tending to level out at about 
0.955. Fig. 4 also shows values of (cos 2 e) against 
draw ratio 2, this time calculated by replacing I(~) 
with the idealized g(e) of Equation 16 in Equation 1. 
Hence, comparisons of the actual extents of draw- 
induced preferred orientation in Fig. 3 may be made 
against those assuming affine deformation. For 
example, Fig. 3 shows that a (cos 2 c~) of 0.95, which 
is typical of fine fibres in general, is produced by a 
draw ratio of about 300 in the co-polyester, whereas 
Fig. 4 shows that consideration of the geometry of 
deformation alone would predict an equivalent draw 
ratio ()~ of 9.7 to produce the same extent of 
orientation. 

The ratio of these two draw ratios provides a useful 
parameter which directly expresses the efficiency of 
hot drawing at a particular stage during drawing. If 
this was expressed as a percentage in the case above, 
the drawing efficiency would be 3.2% for a draw ratio 
of 300. Table II shows the drawing efficiency of all 
four fibres, indicating a fall off with increasing draw 
ratio. 

4. Conclusions 
The above analysis shows that increasing the draw 
ratio of liquid crystal polyester produces an increasing 
deviation from a mechanism of deformation predicted 
by geometric considerations alone. Affine deforma- 
tion involves a mixture of rotational and translational 
movement of the semi-rigid molecules during idealized 
drawing with the rotational component only con- 
tributing to the enhancement in preferred orientation. 
The results show that ever-greater proportions of 
translational molecular motion, over and above that 

expected in pure affine deformation, are involved in 
drawing at higher draw ratios. 

Previous work on the same material has shown that 
the Young's modulus increases from approximately 
32 to 60 GPa as the fibre diameter decreases from 440 
to 60#m [12], thus demonstrating the importance of 
maximizing the preferred orientation. Annealing is 
usefully employed in enhancing the mechanical 
properties of fibres in general, in that both crystallinity 
and preferred orientation are improved when the 
optimum heat-treatment temperature is employed. 
Therefore, the preceeding analysis of equatorial dif- 
fraction traces may be applied not only to characterize 
drawing efficiency, but also changes in preferred 
orientation on further heat treatment. 
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